7 research outputs found

    Adaptation autonomique d'applications pervasives dirigée par les architectures

    Get PDF
    The autonomic adaptation of software application is becoming increasingly important in many domains, including pervasive field. Indeed, the integration fo different application resources (physical devices, services and third party applications) often needs to be dynamic and should adapt rapidly and automatically to changes in the execution context. To that end, service-oriented components offer support for adaptation at the architectural level. However, they do not allow the formalisation of all the design constraints that must be guaranteed during the execution of the system. To overcome this limitation, this thesis modeled the design, deployment and runtime architectures. Also, it proposes to establish links between them and has developed algorithms to check the validity of an execution architecture with respect to its architectural design. This led us to consider the entire life cycle of components and to define a set of concepts to be included in architectures supporting variability. This formalisation can be exploited both by a human administrator and by an autonomic manager that has its knowledge base increased and structured. The implementation resulted in the realization of a knowledge base, providing a studio (Cilia IDE) for the design, deployment and supervision of dynamic applications, as well as an autonomic manager that can update the structure of pervasive applications. This thesis has been validated using a pervasive application called “Actimetry”, developed in the FUI~MEDICAL project.La problématique d'adaptation autonomique prend de plus en plus d'importance dans l'administration des applications modernes, notamment pervasives. En effet, la composition entre les différentes ressources de l'application (dispositifs physiques, services et applications tierces) doit souvent être dynamique, et s'adapter automatiquement et rapidement aux évolutions du contexte d'exécution. Pour cela, les composants orientés services offrent un support à l'adaptation au niveau architectural. Cependant, ils ne permettent pas d'exprimer l'ensemble des contraintes de conception qui doivent être garanties lors de l'exécution du système. Pour lever cette limite, cette thèse a modélisé les architectures de conception, de déploiement et de l'exécution. De plus, elle a établi des liens entre celle-ci et proposé des algorithmes afin de vérifier la validité d'une architecture de l'exécution par rapport à son architecture de conception. Cela nous a conduits à considérer de près le cycle de vie des composants et à définir un ensemble de concepts afin de les faire participer à des architectures supportant la variabilité. Notons que cette formalisation peut être exploitée aussi bien par un administrateur humain, que par un gestionnaire autonomique qui voit ainsi sa base de connaissances augmentée et structurée. L'implantation a donné lieu à la réalisation d'une base de connaissance, mise à disposition d'un atelier (Cilia IDE) de conception, déploiement et supervision d'applications dynamiques, ainsi que d'un gestionnaire autonomique capable de modifier la structure d'une application pervasive. Cette thèse a été validée à l'aide d'une application pervasive nommée >, développée dans le cadre du projet FUI~MEDICAL

    Advancing experimentation-as-a-service through urban IoT experiments

    Get PDF
    Smart cities are becoming a vibrant application domain for a number of science fields. As such, service providers and stakeholders are beginning to integrate co-creation aspects into current implementations to shape the future smart city solutions. In this context, holistic solutions are required to test such aspects in real city-scale Internet of Things (IoT) deployments, considering the complex city ecosystems. In this paper, we discuss OrganiCity's implementation of an experimentation-as-a-service (EaaS) framework, presenting a toolset that allows developing, deploying, and evaluating smart city solutions in a one-stop shop manner. This is the first time such an integrated toolset is offered in the context of a large-scale IoT infrastructure, which spans across multiple European cities. We discuss the design and implementation of the toolset, presenting our view on what EaaS should provide, and how it is implemented. We present initial feedback from 25 experimenter teams that have utilized this toolset in the OrganiCity project, along with a discussion on two detailed actual use cases to validate our approach. Learnings from all experiments are discussed as well as architectural considerations for platform scaling. Our feedback from experimenters indicates that EaaS is a viable and useful approach.The authors would like to thank the experimenter teams and volunteers who participated in OrganiCit

    SocIoTal - The development and architecture of a social IoT framework

    Get PDF
    In this paper the development and architecture of the SocIoTal platform is presented. SocIoTal is a European FP7 project which aims to create a socially-aware citizen-centric Internet of Things infrastructure. The aim of the project is to put trust, user-control and transparency at the heart of the system in order to gain the confidence of everyday users and developers. By providing adequate tools and mechanisms that simplify complexity and lower the barriers of entry, it will encourage citizen participation in the Internet of Things. This adds a novel and rich dimension to the emerging IoT ecosystem, providing a wealth of opportunities for the creation of new services and applications. These services and applications will be able to address the needs of society therefore improving the quality of life in cities and communities. In addition to technological innovation, the SocIoTal project sought to innovate the way in which users and developers interact and shape the direction of the project. The project worked on new formats in obtaining data, information and knowledge. The first step consisted of gaining input, feedback and information on IoT as a reality in business. This led to a validated iterative methodology which formed part of the SocIoTal toolkit.This work was supported by the SocIoTal project under grant agreement No 609112

    Autonomic adaptation of pervasive applications using architectures

    No full text
    La problématique d'adaptation autonomique prend de plus en plus d'importance dans l'administration des applications modernes, notamment pervasives. En effet, la composition entre les différentes ressources de l'application (dispositifs physiques, services et applications tierces) doit souvent être dynamique, et s'adapter automatiquement et rapidement aux évolutions du contexte d'exécution. Pour cela, les composants orientés services offrent un support à l'adaptation au niveau architectural. Cependant, ils ne permettent pas d'exprimer l'ensemble des contraintes de conception qui doivent être garanties lors de l'exécution du système. Pour lever cette limite, cette thèse a modélisé les architectures de conception, de déploiement et de l'exécution. De plus, elle a établi des liens entre celle-ci et proposé des algorithmes afin de vérifier la validité d'une architecture de l'exécution par rapport à son architecture de conception. Cela nous a conduits à considérer de près le cycle de vie des composants et à définir un ensemble de concepts afin de les faire participer à des architectures supportant la variabilité. Notons que cette formalisation peut être exploitée aussi bien par un administrateur humain, que par un gestionnaire autonomique qui voit ainsi sa base de connaissances augmentée et structurée. L'implantation a donné lieu à la réalisation d'une base de connaissance, mise à disposition d'un atelier (Cilia IDE) de conception, déploiement et supervision d'applications dynamiques, ainsi que d'un gestionnaire autonomique capable de modifier la structure d'une application pervasive. Cette thèse a été validée à l'aide d'une application pervasive nommée >, développée dans le cadre du projet FUI~MEDICAL.The autonomic adaptation of software application is becoming increasingly important in many domains, including pervasive field. Indeed, the integration fo different application resources (physical devices, services and third party applications) often needs to be dynamic and should adapt rapidly and automatically to changes in the execution context. To that end, service-oriented components offer support for adaptation at the architectural level. However, they do not allow the formalisation of all the design constraints that must be guaranteed during the execution of the system. To overcome this limitation, this thesis modeled the design, deployment and runtime architectures. Also, it proposes to establish links between them and has developed algorithms to check the validity of an execution architecture with respect to its architectural design. This led us to consider the entire life cycle of components and to define a set of concepts to be included in architectures supporting variability. This formalisation can be exploited both by a human administrator and by an autonomic manager that has its knowledge base increased and structured. The implementation resulted in the realization of a knowledge base, providing a studio (Cilia IDE) for the design, deployment and supervision of dynamic applications, as well as an autonomic manager that can update the structure of pervasive applications. This thesis has been validated using a pervasive application called “Actimetry”, developed in the FUI~MEDICAL project

    Design and runtime architectures to support autonomic management

    No full text
    International audienceAutonomic computing seeks to render computing systems as self-managed. In other words, its objective is to enable computer systems to manage themselves so as to minimise the need for human input [5,6]. Software architectures can be used in order to express constraints to be maintained all along the execution of a system and, conversely, to present the state of the running system. In this paper, we present an approach where design and runtime architectures are used to manage service-oriented systems. We show how concepts of design time and runtime can be linked and exploited by an autonomic manager or by a human administrator. This approach is validated on a real use case belonging to the pervasive health domain and built with the Orange Labs

    Maintaining Traceability Links between Design and Runtime Architectures to support Autonomic Management

    No full text
    International audienceAutonomic computing seeks to render computing systems as self-managed. In other words, its objective is to enable computer systems to manage themselves so as to minimise the need for human input. Software architectures can be used in order to express constraints to be maintained all along the execution of a system and, conversely, to present the state of the running system. In this paper, we present an approach where design and runtime architectures are used to manage service-oriented systems. We show how concepts of design time and runtime can be linked and exploited by an autonomic manager or by a human administrator. This approach is validated on a real use case belonging to the pervasive domain
    corecore